The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes.
نویسندگان
چکیده
The formation of transition state mimics of phosphoryl transfer reactions with the metal oxoanion vanadate is a powerful technique in macromolecular crystallography. The tendency of vanadate to form pentacovalent complexes exhibiting trigonal bipyramidal geometry makes this compound a close approximation of the transition state for such reactions. In many cases, vanadate complexes provide the most accurate visualization of the transition state that can be reasonably achieved. A survey of the Protein Data Bank reveals that a relatively small number of structures (39, representing 23 unique proteins) include vanadate, yet these structures represent four of the six E.C. categories of enzymes, and were obtained in crystals with pH values ranging from 5.0 to 7.8. Vanadate has additional advantages over other compounds such as aluminum fluoride, beryllium fluoride and nitrate used for visualization of transition state mimics in that vanadate readily forms covalent bonds with a variety of ligands and has produced a wider variety of transition state mimics. Given the hundreds of crystal structures that have been solved for phosphoryl transfer enzymes, it is surprising that vanadate has not been used more frequently for visualization of transition state analogs. We propose that an opportunity exists for vanadate to become a more commonly utilized component of the macromolecular crystallographer's toolbox.
منابع مشابه
Pentavalent Organo-Vanadates as Transition State Analogues for Phosphoryl Transfer Reactions.
Pentavalent organo-vanadates have been put forth as transition state analogues for a variety of phosphoryl transfer reactions. In particular, uridine 2',3'-cyclic vanadate (U>v) has been proposed to resemble the transition state during catalysis by ribonuclease A (RNase A). Here, this hypothesis is tested. Lys41 of RNase A is known to donate a hydrogen bond to a nonbridging phosphoryl oxygen in...
متن کاملTungstate as a Transition State Analog for Catalysis by Alkaline Phosphatase.
The catalytic mechanisms underlying Escherichia coli alkaline phosphatase's (AP) remarkable rate enhancement have been probed extensively. Past work indicated that whereas the serine nucleophile (Ser102) electrostatically repels the product phosphate, another oxyanion, tungstate, binds more strongly in the presence of Ser102. These results predict a covalent bond between the serine nucleophile ...
متن کاملAn ensemble of structures of Burkholderia pseudomallei 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase
Burkholderia pseudomallei is a soil-dwelling bacterium endemic to Southeast Asia and Northern Australia. Burkholderia is responsible for melioidosis, a serious infection of the skin. The enzyme 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase (PGAM) catalyzes the interconversion of 3-phosphoglycerate and 2-phosphoglycerate, a key step in the glycolytic pathway. As such it is an extensi...
متن کاملEffect of vanadium ions on ATP citrate lyase.
We have shown previously that vanadium ions (vanadate and vanadyl) inhibit autophosphorylation of histidine but not that of serine in ATP citrate lyase (ACL). Here we report the results concerning the effect of monovanadate (+ oligomers), decavanadate as well as vanadyl on the activity of ACL of the rat liver. Susceptibility of ACL to inhibition by vanadate was rather low. Vanadate at concentra...
متن کاملThe pentacovalent phosphorus intermediate of a phosphoryl transfer reaction.
Enzymes provide enormous rate enhancements, unmatched by any other type of catalyst. The stabilization of high-energy states along the reaction coordinate is the crux of the catalytic power of enzymes. We report the atomic-resolution structure of a high-energy reaction intermediate stabilized in the active site of an enzyme. Crystallization of phosphorylated beta-phosphoglucomutase in the prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FEBS letters
دوره 577 3 شماره
صفحات -
تاریخ انتشار 2004